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Can one expect a Kondo effect in quasiperiodic structures? 
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Abstract, We show that electrons hopping over quasiperiodic tilings give rise to a modified 
Kondo effect, obeying a power-law behaviour in place of the standard logarithmic behaviour. 

1. Introduction 

In the usual description of the Kondo effect, it is assumed that the conduction electrons near 
the Fermi level can fill a single uniform energy band. However, there exists a variety of 
situations in which the assumption of a uniform density of states fails to provide the correct 
physical answer. 

For instance, if one assumes a multiple band structure, the conduction electrons can 
overscreen the spin impurity resulting in an anomalous effect [I]. In UxY1,Pd3 alloys a 
quadrupolar Kondo effect with marginal Fermi-liquid behaviour has, in fact, been observed 
[2]. A different situation, in which the fermions occupy a band with a density of states 
going to zero with power-law behaviour near the Fermi energy, has been shown to give rise 
to a non-trivial zero-temperature phase 'uansition at a finite coupling constant, in contrast 
to the zero-coupling constant wansition of the ordinary case [3]. 

In this paper we consider electrons moving over a quasiperiodic structure, such as a 
quasiperiodic superlattice or a quasicrystalline tiling. It is now established that electron 
propagation over such structures is weaker than in the periodic case. Recent measurements 
on defect-fiee quasicrystals exhibit a behaviour close to the metal-insulator transition [4]. 
Various mechanisms can be responsible for the observed anomalously high resistivity, 
including a low density of carriers at the Fermi energy, band hybridization and critical 
energy eigenstates. We focus here on the latter property, i.e.~on the fact, verified on 
quasiperiodic.lattices, that the wavefunctions are neither Bloch states nor do they have an 
exponential decay at large distances, but instead have an algebraic decay. 

In the simplest case of a ID quasicrystal, e.g. the Fibonacci chain, all eigenstates are 
critical [5];  correspondingly, the energy spectrum has been shown rigorously to be singular 
continuous (see, e.g., [ 6 ] )  with a total bandwidth decreasing with a power-law behaviour 
with respect to the system size. 

 various^ numerical works refer to quasicrystalline tilings in 2D (see, e.g., [7] for 
the Penrose tiling (PT) and IS] for the octagonal tiling COT)). Both FT and OT, together 
with quasiperiodic translational ordering, include topological disorder with coordination 
number varying from site to site. Since their Fourier transforms are invariant under non- 
crystallographic symmetry groups (pentagonal and octagonal, respectively), it is generally 
accepted that these tilings provide a realistic description of real quasicrystals. 
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It was shown in the OT case, in particular, that the Lebesgue measure of the spectrum, 
in contrast to the 1D case, is generally finite, but in spite of this there is evidence of a 
singular continuous behaviour. Quantum diffusion is characterized by a slower than ballistic 
spreading of the wavepacket with power-law behaviour in time. Consistently, it was shown 
that in the PT case the stationary states are critic& @&-) = 1vl-B with the exponent p 
generally varying along the energy specbum. 

The observed conductive properties of 3D Al-Cu-Fe icosahedral phases have been 
interpreted satisfactorily in terms of weak localization theory: critical wavefunctions seem 
appropriate for describing the physical states of such systems. 

Interestingly enough, it was observed that the perfectly quasicrystalline samples are 
more resistive than the disordered ones [9]. This effect was recovered in the OT upon 
introducing phasonic disorder with the following interpretation: the sinplar shucture of the 
density of states is smeared out by the disorder, recovering a smooth density of states with 
extended wavefunctions. 

Our aim here is to determine how the effective electron-electron interaction induced 
by the scattering with magnetic impurities is influenced by such anomalous behaviour. We 
will assume that the Fermi energy lies close to a power-law singularity of the density of 
states and that the wavefunctions there are critical. 

2. Electronic lifetime 

We consider the Kondo model associated with electrons hopping over a quasiperiodic tiling 
with N sites so that the unperturbed Hamiltonian HO already includes the underlying disorder 
of the lattice; the electrons have a contact interaction with N, impurities having spin S. In 
the energy representation, the total Hamiltonian H is 

(1) 

where I = 1,. . . , NI.  The magnitude of the interaction J ( 6 ,  EL,) depends on the localized 
wavefunction @I of the impurity at the site & as well as on the scattering wavefunction 

We will hereafter disregard the site dependence of j l  ( j ,  e j ) .  As usual, we consider 
low impurity concentration c = NJN, so that one can assume that the conduction electron 
scatters one impurity at a time. The scattering matrix, up to second order at the Ith impurity, 
is (see, e.g., [IO]) 

$,,(e3 RI) = -J(c * S)VA + jzI@~(E4)l2/ dit’ $~(t‘)l@~(Ri)Iz 

(Hob = €W J ( € ,  Ri) = irl&(&2r)12. 

D 

-D 
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Here U@') is the global density of states over a band having width 2 0  around 
the Fermi energy p, ($ = t - p): f($) is the Fermi distribution (i.e. Z f ( 5 )  - 1 = 
- tanh(e/(ZT))). The final approximate formula is responsible for the dominant contribution 
to the Kondo singularity. In fact, the integrand of the neglected term contains the factor 
l@e(R!)l2 - 1@t,(%)I2/(5 - e'), which, independently of the explicit behaviour of the 
wavefunction in terms of the energy, gives rise to a weaker singularity than the one appearing 
in the right-hand side of equation (5) (see below). 

As a fuaher remark, one can think that the single impurity contribution becomes 
negligible if the wavefunction is cenhed away from the scattering site. This is certainly m e  
if one deals with exponentially localized wavefunctions and the average impurity distance 
is larger than the localization l e n o .  However, as we will see, the wavefunctions in these 
systems are characterized by power-law decay so that their amplitude at a generic impurity 
site can be significantly different from zero. 

In the case of a pure band spectrum one replaces U($) by u(0) giving 

' where $ is taken outside the integration interval. 

is interpreted as P( l /B  - 5'). 
Notice, however, that (3) is still valid when 5 lies in the interval, provided l/(C - 5') 

For the second term we have 

Note that contribution (3) is usually negligible with respect to (4). Following the results 
obtained in [7] for PI and in [SI for OT, we assume that close to the Fermi energy the density 
of states is dominated by a power-law singularity: more precisely we let u(5)  % 1$I"-' 
(0 < 01 c 1). From level statistics, as well as from anomalous diffusion analysis in [SI, it 
was argued that, in general, the singularity in the density of states is energy dependent; in 
the ID case this fact has been shown explicitly (see, e.g., [5]).  

In the present context this implies a strong dependence of the modified Kondo behaviour 
on the energy region where the Fermi level is located. Equation (3) now takes the form 

In deriving (5) we have used 

(3. r 1 - 9  2 
1 n 

dxx"-'P- =-cot 

When a + 1, one recovem, for (5lD) c 1, the same behaviour as in (3). 
Similarly, (4) becomes 
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Again, by letting CY -+ 1 in (6), the logarithmic singularity (4) is obtained. It was for just 
this reason that, in (66), the otherwise arbitrary constant was chosen to be one. 

As expected, the effective coupling J e ~ ,  corrected to second order, increases when j c. 0 
(antiferromagnetic case) and decreases when j > 0. 

In the limit T + 0, the total transition. probability is obtained from (5) and (64 in the 
form 

V G Benza and E Montaldi 

4 z p ( P , i )  = IPt(Ri)lZp. 

In the antiferromagnetic case we have 

N (7') 

i=l 

In equation (7) we kept the leading orders in the coupling and replaced the sum 
over the impurities with the sum over the whole lattice multiplied by the concentration 
c. This emphasizes the fact that the relevant amplitude is given by the momenta I&), 
associated with the global behaviour of the wavefunction, rather than by the amplitude 
of the wavefunction at a particular lattice site. The scaling of the momenta with N is 
sensitive to the degree of localization (I&) is usually called the inverse participation 
ratio). For instance, if the scattering states were plane waves, we would have Z6/14 w 1 / N ,  
so that the natural perturbation parameter would be j / N .  In our context this parameter is 
dependent on the exponent p = B o ) ,  (+t(r) = l/(lTIB(tl)). We are mainly interested in 
the case 0 < 6 i d / 2  (d being the dimension of the system), which corresponds to states 
that, although critical, are non-integrable and can be considered as extended. This is the 
most favourable situation in that, already, hom single-impurity scattering one can have a 
significant amplitude, but for power-decaying functions a localization length can be hardly 
defined so that when d/2 e p the global contribution is strictly different from zero; its 
actual order of magnitude cannot be determined in the present general treatment. 

It is easily seen that the algebraic decay of the wavefunctions implies, for the momentg 
the following behaviour 

where 4.9 and c&) are strictly positive; as a result the natural perturbation parameter is 
now j /N[d -Zp@) l /d .  The g dependence of the momenta IzP(t) is very irregular (see, e.g., 
[8] where Z4Q) is exhibited for the OT and a related generalized norm is computed for the 
m. 

It is not possible to obtain from (7') the conductivity U in a closed form; it is nonetheless 
possible to determine a lower and an upper bound for U. Indeed, denoting the extrema of 
B O )  in the interval It[ < D by Bmin and we have 
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where Kzpr K i p  are some positive constants. By means of (8) one concludes that 

1 1 1 - < -  < -  
Ti z ( D  zz 

where for 1/72 one must replace K4 with Ki, ,9& with Bmax and j ;  with j ; .  

the bounds u1 and 02 from the well known formula 
In terms of qand zz, for a given particle velocity at the Fermi energy, one can obtain 

so that the low-T behaviour becomes 

0 2  < < Cl 

whence 

Provided one also includes the second term in the right-hand side of (64, it is easily verified 
that when CY -+ 1 the usual logarithmic behaviour is recovered. 

3. Conclusions 

In this paper we studied the Kondo effect for electrons hopping on quasiperiodic tilings. 
On the basis of known results (referring to the 1D case and to the 2D case) we assumed 
wavefunctions with algebraic decay and singular continuous spectra 

We have shown that under these conditions the resistivity exhibits a power-law behaviour 
at low temperatures with an exponent dependent on the singularity of the density of states 
at the Fermi energy; the degree of localization of the wavefunctions has an influence on 
the amplitudes involved, but not on the exponent. A sensitive dependence is expected on 
the region where the Fermi energy is located, as long as, in principle, a whole spectrum of 
exponents can appear (in particular one cannot exclude also smooth portions with standard 
Kondo behaviour). The effect refers to defect-free tilings; phasonic disorder tends to destroy 
the singular behaviour of the density of states, thus extending the smooth portions of the 
spectrum. 

It is known that the Fermi energy of quasicrystals lies in a pseudogap of the order of 
1 eV associated with .the interaction of the Fermi surface with the Jones zone. The scale 
of the pseudogap refers to the coarse-grained behaviour of the density of states; in fact the 
presently obtained defect-free quasicrystals exhibit a finer structure on smaller scales [ 111 
(the characteristic energy scale can be of the order of 10-'-10-2 eV) together with a strong 
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departure from the free-electron model [4]. We suggest that the critical states arising in ID 
and 2D tilings are physically relevant also in 3D defect-free quasicrystals. To our knowledge, 
the presently available magnetic icosahedral phases have an excessive amount of disorder to 
resolve a singular behaviour in the energy spectrum [IZ]. If u(c)  is predominantly smooth 
with isolated peaks, our effect can be obtained provided that the Fermi energy is tuned close 
to the singularity. The quality of the detection is clearly improved by reducing the error in 
tuning and by using samples with high Kondo temperature TK. An error in tuning of the 
order of eV, e.g., defines a range of detection from Ti down to 1 K. A high density of 
peaks in v ( c )  is a more interesting situation: if ~ B T K  w IO-* eV, an average spacing between 
peaks and valleys of the order of  % eV makes the effect almost generic (occurring 
with a probability of order unity withput tuning). A comprehensive physical description, 
which should include the competition with other effects such as direct electron-electron 
scattering and phonon hopping, goes clearly beyond the aim of ow treatment. 
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